Abstract

A cross sectional serological survey of arboviral infections in humans was conducted on the three islands of the Union of Comoros, Indian Ocean, in order to test a previously suggested contrasted exposure of the three neighboring islands to arthropod-borne epidemics. Four hundred human sera were collected on Ngazidja (Grande Comore), Mwali (Mohéli) and Ndzouani (Anjouan), and were tested by ELISA for IgM and/or IgG antibodies to Dengue (DENV), Chikungunya (CHIKV), Rift Valley fever (RVFV), West Nile (WNV), Tick borne encephalitis (TBEV) and Yellow fever (YFV) viruses and for neutralizing antibodies to DENV serotypes 1–4. Very few sera were positive for IgM antibodies to the tested viruses indicating that the sero-survey was performed during an inter epidemic phase for the investigated arbovirus infections, except for RVF which showed evidence of recent infections on all three islands. IgG reactivity with at least one arbovirus was observed in almost 85% of tested sera, with seropositivity rates increasing with age, indicative of an intense and long lasting exposure of the Comorian population to arboviral risk. Interestingly, the positivity rates for IgG antibodies to DENV and CHIKV were significantly higher on Ngazidja, confirming the previously suggested prominent exposure of this island to these arboviruses, while serological traces of WNV infection were detected most frequently on Mwali suggesting some transmission specificities associated with this island only. The study provides the first evidence for circulation of RVFV in human populations from the Union of Comoros and further suggests that the virus is currently circulating on the three islands in an inconspicuous manner. This study supports contrasted exposure of the islands of the Comoros archipelago to arboviral infections. The observation is discussed in terms of ecological factors that may affect the abundance and distribution of vector populations on the three islands as well as concurring anthropogenic factors that may impact arbovirus transmission in this diverse island ecosystem.

Highlights

  • Vector-borne infections are mostly sensitive to environmental changes whether natural or anthropogenic

  • The Comoros archipelago (2144 Km2) consists of four volcanic islands that are distant of 40–60 Km apart, located at the northern end of the Mozambique Channel

  • The geographic proximity to Africa exposes the Comoros archipelago to arboviral emergence as evidenced by a number of epidemics recorded in the last decades

Read more

Summary

Introduction

Vector-borne infections are mostly sensitive to environmental changes whether natural or anthropogenic. Slight variations in ecologic conditions may severely affect pathogen transmission capacity by impacting the diversity, abundance and/or behavior of vectors, their competence for transmission, together with several traits of the parasite itself [1,2]. Unraveling these factors helps understanding how vector borne diseases may express contrasted dynamics in different geographic locations and identifying drivers of emergence acting either at local, regional or large distance scales. The Comoros archipelago (2144 Km2) consists of four volcanic islands that have emerged de novo from the South-Western Indian Ocean (SWIO) floor at the Comoros hot spot. The southern island of Mayotte is administered by France and exhibits significantly higher development indices

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.