Abstract

Series representations for several density functions are obtained as mixtures of generalized gamma distributions with discrete mass probability weights, by using the exponential expansion and the binomial theorem. Based on these results, approximations based on mixtures of generalized gamma distributions are proposed to approximate the distribution of the sum of independent random variables, which may not be identically distributed. The applicability of the proposed approximations are illustrated for the sum of independent Rayleigh random variables, the sum of independent gamma random variables, and the sum of independent Weibull random variables. Numerical studies are presented to assess the precision of these approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.