Abstract

In this study, we validated the use of (99m)Tc-hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) micro-SPECT combined with micro-CT for semiquantification of the infarct size after an experimental stroke in rats and compared our observations with those obtained from histology. This imaging strategy was applied to measure the longitudinal effect of mild hypothermia on the progression of brain damage after stroke in rats. The endothelin-1 model was used to elicit a transient focal cerebral ischemia in rats. This resulted in a reproducible insult in which the core is represented by the striatum and the penumbra by the cortex. Micro-SPECT and micro-CT images were taken at 1, 3, and 7 d after infusion of endothelin-1 and compared with those taken before the insult. After the last acquisition, rats were sacrificed and the infarct volume was determined via Nissl staining. The results obtained with micro-SPECT and micro-CT were compared with histology at the same time points. Mild hypothermia (33°C) was induced for 2 h, starting 20 min after the insult. Brain damage was estimated using micro-SPECT and micro-CT and was reproducible with minimal interobserver variability. Normothermic stroke rats had reduced (99m)Tc-HMPAO uptake at 1 and 3 d after the insult, whereas hypothermia improved damage after stroke. These findings corroborate with histology at the same time points. At 1 wk after the insult, no reduction of radioactive uptake was observed in any treatment group. Micro-SPECT and micro-CT allow quick and reproducible semiquantification of brain damage as an interesting alternative to histology to measure the extent of infarcted tissue in small animals after stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.