Abstract

This paper investigates a single machine serial-batching scheduling problem considering release times, setup time, and group scheduling, with the combined effects of deterioration and truncated job-dependent learning. The objective of the studied problem is to minimize the makespan. Firstly, we analyze the special case where all groups have the same arrival time, and propose the optimal structural properties on jobs sequencing, jobs batching, batches sequencing, and groups sequencing. Next, the corresponding batching rule and algorithm are developed. Based on these properties and the scheduling algorithm, we develop a hybrid VNS–ASHLO algorithm incorporating variable neighborhood search (VNS) and adaptive simplified human learning optimization (ASHLO) algorithms to solve the general case of the studied problem. Computational experiments on randomly generated instances are conducted to compare the proposed VNS–ASHLO with the algorithms of VNS, ASHLO, Simulated Annealing (SA), and Particle Swarm Optimization (PSO). The results based on instances of different scales show the effectiveness and efficiency of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.