Abstract

Solid-state transformations in metal-organic framework (MOF) systems are important phenomena and have led to the creation of new MOF structures. Solid-state transformations from interpenetrated to non-interpenetrated networks involving rearrangement of secondary building units (SBUs) in a single-crystal-to-single-crystal (SCSC) fashion have not been explored to date. Herein, we report the sequential, thermally stimulated solid-state transformations in a barium-organic framework ( UPC-600 ). The two-fold interpenetrated framework of UPC-600 is converted at 373 K to UPC-601 , anon-interpenetrated framework. This proceeds in a SCSC fashion and involves the rearrangement of two proximate rod-shaped SBUs in different nets to generate a new rod-shaped SBU. At 473 K,acontinuous solid-state transformation involving a second rearrangementoccurred, UPC-601 converted to UPC-602 by the rearrangement of the 1D rod-shaped SBU to a 2D layer SBU. This is the first example of such a thermally-driven stepwise transformation involving simultaneous cleavage and regeneration of multiple bonds.This result will enable detailed studies of solid-state transformations, and encourages a deep understanding of the role of solid-state transformations in the synthesis of MOF materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.