Abstract

Hydrogen production via oxidative steam reforming of ethanol in a dense tubular membrane reactor (DMR) is sequentially simulated with ASPEN PLUS. The DMR is divided into multi-sub-reactors, and the Gibbs free energy minimization sub-model in ASPEN PLUS is employed to simulate the oxidative steam reforming of ethanol process in the sub-reactors. A FORTRAN sub-routine is integrated into ASPEN PLUS to simulate the oxygen permeation through membranes in the sub-separators. The simulation result indicates that there is an optimal length of the tubular membrane reactor at the operating temperature and steam-to-ethanol (H 2O/EtOH) ratio, under which hydrogen and carbon monoxide formation reach their maxima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.