Abstract

AbstractWe demonstrate that a single polycyclic π‐scaffold can undergo sequential multistep excited‐state structural evolution along the bent, planar, and twisted conformers, which coexist to produce intrinsic multiple fluorescence emissions in room‐temperature solution. By installing a methyl or trifluoromethyl group on the ortho‐site of N,N′‐diphenyl‐dihydrodibenzo[a,c]phenazine (DPAC), the enhanced steric effects change the fluorescence emission of DPAC from a dominant red band to well‐resolved triple bands. The ultra‐broadband triple emissions of ortho‐substituted DPACs range from ≈350 to ≈850 nm, which is unprecedented for small fluorophores with molecular weight of <500. Ultrafast spectroscopy and theoretical calculations clearly reveal that the above dramatic changes originate from the influence of steric hindrance on the shape of excited state potential energy surface (S1 PES). Compared to the steep S1 PES of parental DPAC, the introduction of ortho‐substituent is shown to make the path of structural evolution in S1 wider and flatter, so the ortho‐substituted derivatives exhibit slower structural transformations from bent to planar and then to twisted forms, yielding intrinsic triple emission. The results provide the proof of concept that the bent, planar, and twisted emissive states can coexist in the same S1 PES, which greatly expand the fundamental understanding of the excited‐state structural relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.