Abstract

This paper develops information-theoretic bounds for sequential multihypothesis testing and fault detection in stochastic systems. Making use of these bounds and likelihood methods, it provides a new unified approach to efficient detection of abrupt changes in stochastic systems and isolation of the source of the change upon its detection. The approach not only generalizes previous work in the literature on asymptotically optimal detection-isolation far beyond the relatively simple models treated but also suggests alternative performance criteria which are more tractable and more appropriate for general stochastic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.