Abstract
Conventional conductive films that are used as electrodes in organic thin film transistors (OTFTs) are susceptible to mechanical deformation, limiting the applicability of such films in flexible wearable electronic devices. To address this limitation, a hybrid conductive film (HCF) consisting of silver nanowires (NWs) and poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) fabricated through roll-to-roll (R2R) slot-die coating is presented for use as a gate electrode in OTFTs. Mechanical stability compares by bending and taping test measurement quantitatively. Coating flow rate significantly influences sheet resistance and transmittance. A performance evaluation of the OTFTs with the Ag NW/PEDOT:PSS HCF as the gate electrode shows that the charge carrier mobility and on/off current ratio are 2.168 cm2 V−1 s−1 and 6 × 105, respectively. In addition, the HCF is highly flexible, and the HCF-based OTFTs exhibit 57% less mobility reduction than a conventional OTFT based on silver ink after 50,000 bending cycles with a 2 mm bending radius. These results highlight the potential of the fabricated HCF as an electrode material for flexible electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.