Abstract

A class of nonlinear sequential fractional differential equations dependent on the basic fractional operator involving a Hadamard derivative is studied for arbitrary real noninteger order α ∈ R + . The existence and uniqueness of the solution is proved using the contraction principle and a new, equivalent norm and metric, introduced in the paper. As an example, a linear nonhomogeneous FDE is solved explicitly in arbitrary interval [ a, b] and for a nonhomogeneous term given as an arbitrary Fox function. The general solution consists of the solution of a homogeneous counterpart equation and a particular solution corresponding to the nonhomogeneous term and is given as a linear combination of the respective Fox functions series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.