Abstract
In this study a flow injection (FI) system used in conjunction with hydride generation (HG), atomic absorption spectrometry (AAS) and microwave (MW) aided pre-reduction of selenite (Se(IV)) to selenate (Se(IV)) with HCl:HBr has been developed in order to differentiate both inorganic selenium species. As full control of the MW reduction step is possible, the experimental approach allows the use of milder acidic conditions (10% v/v of HCl and HBr) than those conventionally accomplished with hydrochloric acid alone (≥50% v/v). Experimental parameters were optimized by the univariate optimization method. In either case, the linear range was from 1.0 to 30 μg l −1. The detection limits based on 3σ of the blank signal were 0.25 μg l −1 for Se(IV) and 0.30 μg l −1 for Se(VI). The reproducibility, about 3% RSD and recoveries of different amounts of Se(VI) and Se(IV) added to water and orange juice samples (97–103%) were good. The main advantage of the proposed method is that the sequential determination of Se(IV) and Se(VI) is performed at a high sampling frequency (ca. 50 samples per h) in a closed system without Se losses, and with a minimum sample waste, operator attention, and sample manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.