Abstract

A convenient and general strategy has been developed to synthesize stable iridapolycycles 5–8. Reaction of arylacetylenes with iridium-hydride complex [IrH(CO)Cl(PPh3)3]BF4 via nucleophilic addition, oxidative decarbonylation, and C–H bond activation results in the formation of a series of iridacyclopentadiene derivatives, including benzo-iridacyclopentadiene 5, naphtho-iridacyclopentadiene 6, pyreno-iridacyclopentadiene 7, and thieno-iridacyclopentadiene 8. These iridapolycycles display high thermal and air stability yet can be further functionalized via facile ligand substitution reactions. As an example, complex 5 was used as a metallosynthon to react with 2,2′-dipyridyl to give intensely luminescent Ir(III) complex 9 bearing one C∧C and one N∧N ligands. Density functional theory (DFT) calculations reveal that the lowest unoccupied molecular orbitals (LUMOs) of iridapolycycles 5–8 are located on the phosphonium groups while the highest occupied molecular orbitals (HOMOs) are mainly located on the metal...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.