Abstract

Worldwide symmetric encryption standards such as DES (Data Encryption Standard), AES (Advanced Encryption Standard), and EES (Escrowed Encryption Standard), have been — and some of them still are — extensively used to solve the problem of communication over an insecure channel, but with today’s advanced technologies, they seem to not be as secure and fast as one would like. In this paper, we propose efficient alternatives based on special classes of globally invertible cascaded convolutional transducers. The proposed symmetric encryption techniques have at least four advantages over traditional schemes based on Feistel ciphers. First, the secret key of a cascaded convolutional cryptosystem is usually much more easier to generate. Second, the encryption and decryption procedures are much simpler, and consequentially, much faster. Third, the desired security level can be obtained by just setting appropriate values for the parameters of the convolutional cryptosystem. Finally, they are much more parallelizable than symmetric encryption standards based on Feistel ciphers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.