Abstract

Mixed model production lines consider more than one model being processed on the same production line in an arbitrary sequence. Nevertheless, the majority of publications in this area are limited to solutions which determine the job sequence before the jobs enter the line and maintains it without interchanging jobs until the end of the production line, which is known as permutation flowshop. This paper considers a nonpermutation flowshop. Resequencing is permitted where stations have access to intermediate or centralized resequencing buffers. The access to the buffers is restricted by the number of available buffer places and the physical size of the products. Two conceptually different approaches are presented in order to solve the problem. The first approach is a hybrid approach, using Constraint Logic Programming (CLP), whereas the second one is a Genetic Algorithm (GA). Improvements that come with the introduction of constrained resequencing buffers are highlighted. Characteristics such as the difference between the intermediate and the centralized case are analyzed, and the special case of semi dynamic demand is studied. Finally, recommendations are presented for the applicability of the hybrid approach, using CLP, versus the Genetic Algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.