Abstract

DNA sequencing by hybridization was carried out with a microarray of all 46 = 4,096 hexadeoxyribonucleotides (the generic microchip). The oligonucleotides immobilized in 100 × 100 × 20µm polyacrylamide gel pads of the generic microchip were hybridized with fluorescently labeled ssDNA, providing perfect and mismatched duplexes. Melting curves were measured in parallel for all microchip duplexes with a fluorescence microscope equipped with CCD camera. This allowed us to discriminate the perfect duplexes formed by the oligonucleotides, which are complementary to the target DNA. The DNA sequence was reconstructed by overlapping the complementary oligonucleotide probes. We developed a data processing scheme to heighten the discrimination of perfect duplexes from mismatched ones. The procedure was united with a reconstruction of the DNA sequence. The scheme includes the proper definition of a discriminant signal, preprocessing, and the variational principle for the sequence indicator function. The effectiveness of the procedure was confirmed by sequencing, proofreading, and nucleotide polymorphism (mutation) analysis of 13 DNA fragments from 31 to 70 nucleotides long.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.