Abstract
Silent speech decoding (SSD), based on articulatory neuromuscular activities, has become a prevalent task of brain–computer interfaces (BCIs) in recent years. Many works have been devoted to decoding surface electromyography (sEMG) from articulatory neuromuscular activities. However, restoring silent speech in tonal languages such as Mandarin Chinese is still difficult. This paper proposes an optimized sequence-to-sequence (Seq2Seq) approach to synthesize voice from the sEMG-based silent speech. We extract duration information to regulate the sEMG-based silent speech using the audio length. Then, we provide a deep-learning model with an encoder–decoder structure and a state-of-the-art vocoder to generate the audio waveform. Experiments based on six Mandarin Chinese speakers demonstrate that the proposed model can successfully decode silent speech in Mandarin Chinese and achieve a character error rate (CER) of 6.41% on average with human evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.