Abstract

LC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, combined with data processing, stringent, and sequence-similarity database searching tools, was employed in a layered manner to identify proteins in organisms with unsequenced genomes. Highly specific stringent searches (MASCOT) were applied as a first layer screen to identify either known (i.e. present in a database) proteins, or unknown proteins sharing identical peptides with related database sequences. Once the confidently matched spectra were removed, the remainder was filtered against a nonannotated library of background spectra that cleaned up the dataset from spectra of common protein and chemical contaminants. The rectified spectral dataset was further subjected to rapid batch de novo interpretation by PepNovo software, followed by the MS BLAST sequence-similarity search that used multiple redundant and partially accurate candidate peptide sequences. Importantly, a single dataset was acquired at the uncompromised sensitivity with no need of manual selection of MS/MS spectra for subsequent de novo interpretation. This approach enabled a completely automated identification of novel proteins that were, otherwise, missed by conventional database searches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.