Abstract

The R1 antibiotic resistance plasmid, originally discovered in a clinical Salmonella isolate in London, 1963, has served for decades as a key model for understanding conjugative plasmids. Despite its scientific importance, a complete sequence of this plasmid has never been reported. We present the complete genome sequence of R1 along with a brief review of the current knowledge concerning its various genetic systems and a comparison to the F and R100 plasmids. R1 is 97,566 nucleotides long and contains 120 genes. The plasmid consists of a backbone largely similar to that of F and R100, a Tn21-like transposon that is nearly identical to that of R100, and a unique 9-kb sequence that bears some resemblance to sequences found in certain Klebsiella oxytoca strains. These three regions of R1 are separated by copies of the insertion sequence IS1. Overall, the structure of R1 and comparison to F and R100 suggest a fairly stable shared conjugative plasmid backbone into which a variety of mobile elements have inserted to form an “accessory” genome, containing multiple antibiotic resistance genes, transposons, remnants of phage genes, and genes whose functions remain unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.