Abstract
Experimental results indicate that the PEO was miscible with PVPh-r-PMMA copolymers as shown by the existence of single composition-dependent glass transition temperature over the entire compositions. However, the PVPh-b-PMMA copolymer with PEO shows a like closed loop phase-separated region in this copolymer/homopolymer blend system. Furthermore, FTIR reveals that at least three competing equilibrium are present in these blends; self-association (hydroxyl–hydroxyl), interassociation (hydroxyl–carbonyl) of PVPh-co-PMMA, and hydroxyl–ether interassociation between PVPh and PEO. Based on the Painter–Coleman Association Model (PCAM), a value for inter-association, KC=300 is obtained in PVPh-b-PMMA/PEO blend system at room temperature. Although the relative ratio of interassociation equilibrium constant of PEO to PMMA is larger in PVPh-b-PMMA/PEO blend system, the PVPh-r-PMMA/PEO blend system has greater Δν and greater homogeneity at the molecular scale than the PVPh-b-PMMA/PEO blend system because of the ΔK effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.