Abstract

The four self-complementary tetradeoxynucleotides which contain only cytosine and guanine are 5'-d-(CpGpCpG)-3', 5'-d(CpCpGpG)-3', 5'-d(GpCpGpC)-3', and 5'-d(GpGpCpC)-3'. The Raman spectra of aqueous solutions (about 0.05 M in monomer) of these tetranucleotides at pH 7 and 2 degrees C show clearly that these self-complementary tetranucleotides form double-stranded duplex structures of the canonical B type when the NaCl concentration is 0.5 M NaCl. If the temperature is raised to 50 degrees C, the Raman spectra show that in each case the double-helical B form melts in a non-cooperative way to a disordered single-chain form. On the other hand, if the salt concentration is raised to saturation, the Raman spectrum of only one of these four tetranucleotide solutions at 2 degrees C is changed in any substantial way. The Raman spectrum of the tetranucleotide 5'-d(CpGpCpG)-3' at 2.2 degrees C and at 4 M or higher salt concentration strongly resembles that of double-helical Z-form poly(dC-dG) taken under similar conditions. We conclude that the tetramer 5'-d(CpGpCpG)-3' is the only self-complementary double-helical tetranucleotide containing only cytosine and guanine in which the B-Z transition can be induced by increasing the salt concentration. This tetramer has several types of stacking interactions which differ markedly from stacking interactions in the other tetramers and may account for the enhanced stabilization of its Z conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.