Abstract

An increased focus on characterizing the structural heterogeneity of carbohydrates has been driven by their many significant roles in extant life and potential roles in chemical evolution and the origin of life. In this work, multiplexed drift tube ion mobility-Orbitrap mass spectrometry methods were developed to analyze mixtures of disaccharides modified with noncovalent shift reagents. Since traditional coupling of atmospheric pressure drift tube ion mobility cells with Orbitrap mass analyzers suffers from low duty cycles (<0.1%), a frequency modulation scheme was applied to improve the signal-to-noise ratios (SNR). Several parameters such as the resolution setting and maximum injection time of the Orbitrap analyzer and the magnitude and duration of the frequency sweep were investigated for their impact on the sensitivity gains and resolution of disaccharide-shift reagent adducts. The sweep time and disaccharide concentration had a positive correlation with SNR. The magnitude of the frequency sweep had a negative correlation with SNR. However, increasing the frequency sweep improved the resolution of mixtures of disaccharide analytes. Application of frequency-modulated ion mobility-Orbitrap mass spectrometry to four noncovalently modified glucose dimers allowed for the differentiation of three out of these four analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.