Abstract

In this article, we report the mechanism and kinetics of adsorption of uranyl ions on starch-based functional hydrogels. The hydrogels were prepared from starch in native or hydrolyzed/oxidized form by crosslinking with N,N-methylenebisacrylamide. The hydrogels synthesized from the oxidized starch have carboxylic groups at C-6 position. The effect of the structure and external environmental factors, i.e., contact time, temperature, ion strength, and simulated seawater (0.55 M NaCl and 3 mM NaHCO3), was investigated on the uranyl adsorption behavior of hydrogels. The adsorption of uranyl ions was rapid as the highest adsorption was observed after 6 h and at 40°C. The sorbents also exhibited appreciable ion uptake even from the simulated seawater. The equilibrium data was analyzed using Langmuir and Freundlich adsorption isotherms and pseudo-first order and pseudo-second order kinetic models. Evidence of adsorption was obtained by characterization of the uranyl ions-loaded hydrogels by FTIR spectroscopy and also by elution with 0.1 N HCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.