Abstract

The recognition power and affinity pattern of various cyclodextrins (CD) towards the enantiomers of tetrahydrozoline (THZ) were studied using capillary electrophoresis (CE). As expected, affinity of THZ enantiomers and selectivity of recognition towards CD derivatives was strongly dependent on the cavity size and substituent type and pattern on the CD rims. Not only were the affinity strength and selectivity of recognition affected by the size of the cavity and chemistry of the CDs but also the affinity pattern. Another interesting example of opposite affinity pattern of enantiomers towards α- and β-CD was observed here. In addition, opposite affinity pattern of THZ enantiomers was seen towards β-CD and its acetylated derivatives, while methylation of β-CD did not affect the affinity pattern of THZ enantiomers. In order to get more information about structural mechanisms of the multivariate dependences mentioned above, rotating frame Overhauser enhancement spectroscopy (ROESY) and computation techniques were used. Significant differences between the structure of THZ complexes with different CDs with both methods were encountered. Good correlations between experimentally determined and computed structure of complexes, as well as between computed complex stabilities and enantiomer migration order (EMO) in CE were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.