Abstract

The best piezoelectric properties of any perovskite oxide known are found in the solid solution of the relaxor Pb(Mg1/3Nb2/3)O3 and ferroelectric PbTiO3. Despite its impressive properties, this system has limited analogy. We present the compositional exploration of the Pb-free analogue (1-x)(K1/2Bi1/2)(Mg1/3Nb2/3)O3-x(K1/2Bi1/2)TiO3 (KBMN-KBT). We locate the morphotropic phase boundary between x = 0.86 and 0.88 changing from Cm to Pm symmetry and the optimally performing composition at x = 0.88. We report a piezoelectric figure of merit (d33*) of 192 pm V−1 from strain measurements. Diffraction methods reveal disordered displacements of K+ and Bi3+ which persist from the KBMN endmember through multiple changes in symmetry. Rearrangement of the Bi3+ displacements along the uncommon [011]c direction drives the physical response. Ferroelectric, dielectric, and piezoresponse force microscopy are used to study the progression of physical properties through the MPB and attribute the mechanism to a polarization rotation. Taking account for local, short-range, and average structural features yield a balanced perspective on the structure and properties of this system, isolating the driving force within this system to the Bi3+ bonding configuration. This work yields a strong analogy to the Pb-based analogue, and provides strategies for further optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.