Abstract

Experimental study for separation of hydrogen isotopes has been performed by using a ‘cryogenic-wall’ thermal diffusion column refrigerated by liquid nitrogen. The column separated H-D system at total reflux and total recycle operational modes. The dependences of the separation factor on the column pressure and hot wire temperature were examined for the total reflux experiments. The optimum pressure observed was 30 kPa at 1273 K. The maximum separation factor at 473 K was larger than that at 1273 K since HD molecules were not produced on the hot wire by the isotope exchange reaction. The separation factor was exponentially proportional to the hot wire temperature. In the total recycle experiments, the separation factor was measured under a variety of flow rates, positions and compositions of the feed stream. The increase in the feed flow rate deteriorated the separation factor appreciably. The position and composition of the feed stream were also major parameters affecting the separation factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.