Abstract

Metal-organic frameworks can offer pore geometries that are not available in zeolites or other porous media, facilitating distinct types of shape-based molecular separations. Here, we report Fe2(BDP)3 (BDP(2-) = 1,4-benzenedipyrazolate), a highly stable framework with triangular channels that effect the separation of hexane isomers according to the degree of branching. Consistent with the varying abilities of the isomers to wedge along the triangular corners of the structure, adsorption isotherms and calculated isosteric heats indicate an adsorption selectivity order of n-hexane > 2-methylpentane > 3-methylpentane > 2,3-dimethylbutane ≈ 2,2-dimethylbutane. A breakthrough experiment performed at 160°C with an equimolar mixture of all five molecules confirms that the dibranched isomers elute first from a bed packed with Fe2(BDP)3, followed by the monobranched isomers and finally linear n-hexane. Configurational-bias Monte Carlo simulations confirm the origins of the molecular separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.