Abstract

We study antisymmetric components of matrices characterizing pair interactions in multistrategy evolutionary games. Based on the dyadic decomposition of matrices we distinguish cyclic and starlike hierarchical dominance in the appropriate components. In the symmetric matrix games the strengths of these elementary components are determined. The general features and intrinsic symmetries of these interactions are represented by directed graphs. It is found that the variation of a single matrix component modifies simultaneously the strengths of two starlike hierarchical basis games and many other independent rock-paper-scissors type cyclic basis games. The application of the related concepts is illustrated by discussing the three-strategy voluntary prisoner's dilemma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.