Abstract
A simplified model of arterial blood pressure intended for use in model-based signal processing applications is presented. The main idea is to decompose the pressure into two components: a travelling wave describes the fast propagation phenomena predominating during the systolic phase and a windkessel flow represents the slow phenomena during the diastolic phase. Instead of decomposing the blood pressure pulse into a linear superposition of forward and backward harmonic waves, as in the linear wave theory, a nonlinear superposition of travelling waves matched to a reduced physical model of the pressure, is proposed. Very satisfactory experimental results are obtained by using forward waves, the N-soliton solutions of a Korteweg-de Vries equation in conjunction with a two-element windkessel model. The parameter identifiability in the practically important 3-soliton case is also studied. The proposed approach is briefly compared with the linear one and its possible clinical relevance is discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.