Abstract

A simplified model of arterial blood pressure intended for use in model-based signal processing applications is presented. The main idea is to decompose the pressure into two components: a travelling wave describes the fast propagation phenomena predominating during the systolic phase and a windkessel flow represents the slow phenomena during the diastolic phase. Instead of decomposing the blood pressure pulse into a linear superposition of forward and backward harmonic waves, as in the linear wave theory, a nonlinear superposition of travelling waves matched to a reduced physical model of the pressure, is proposed. Very satisfactory experimental results are obtained by using forward waves, the N-soliton solutions of a Korteweg-de Vries equation in conjunction with a two-element windkessel model. The parameter identifiability in the practically important 3-soliton case is also studied. The proposed approach is briefly compared with the linear one and its possible clinical relevance is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.