Abstract

During the last decade, the steam-iron process has re-emerged as a possible way to separate and/or storage pure hydrogen through the use of metallic oxides subjected to redox cycles. The most renamed candidate to achieve this goal has traditionally been iron oxide. Nevertheless, the study of its behaviour along repetitive reduction/oxidation stages has shown that the hydrogen storage density diminishes abruptly from the first cycle on. To cope with this problem, the inclusion of a second metal oxide in the solid structure has been tried. Isothermal experiments of reduction with hydrogen rich flows and oxidation with steam have been carried out with Al, Cr and Ce as second metals, in nominal amounts from 1% to 10 mol% added to the hematite structure, which has been synthesized in laboratory by coprecipitation. Series of up to seven cycles (reductions followed by oxidations in a thermogravimetric system acting as differential reactor for the gas) have shown that to that point, an almost repetitive behaviour can be obtained, recovering the magnetite (Fe 3O 4) structure after each oxidation step. Since the second metal oxide does not intervene in the reduction/oxidation process, the optimum content of second metal for each species has been determined with the aim to keep the highest hydrogen storage density along cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.