Abstract
SummaryIn this paper we consider a panel data model with individual effects that are arbitrarily correlated with the explanatory variables. The effects are composed as the sum of two different interpretable components, such as inefficiency versus heterogeneity in a production frontier setting, or ability versus socioeconomic background in an earnings function, or genetics versus environment in an epidemiological analysis. We wish to predict the two components separately. This is made possible by assuming that there are observables that are correlated with the first component but not with the second, and other observables that are correlated with the second component but not with the first. This can be true in terms of either simple correlations or partial correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.