Abstract

Monitoring environmental DNA can track the presence of organisms, from viruses to animals, but requires continuous sampling of transient sequences from a complex milieu. Here we designed living sentinels using Bacillus subtilis to report the uptake of a DNA sequence after matching it to a preencoded target. Overexpression of ComK increased DNA uptake 3,000-fold, allowing for femtomolar detection in samples dominated by background DNA. This capability was demonstrated using human sequences containing single-nucleotide polymorphisms (SNPs) associated with facial features. Sequences were recorded with high efficiency and were protected from nucleases for weeks. The SNP could be determined by sequencing or in vivo using CRISPR interference to turn on reporter expression in response to a specific base. Multiple SNPs were recorded by one cell or through a consortium in which each member recorded a different sequence. Sentinel cells could surveil for specific sequences over long periods of time for applications spanning forensics, ecology and epidemiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.