Abstract
A long sequence always contains long-term dependency problems, which leads to paragraph-based sentiment analysis being a very challenging task and difficult to evaluate by using a simple RNN network. It is proposed in this letter to use a stacked CARU network to extract the main information in a paragraph. The resulting network also points out how to use a CNN-based extractor to explore complete passages and capture useful features in their hidden state. In particular, instead of using the Softmax function, the Naïve-Bayes classifier is connected to the end of the CNN-based extractor. The proposed models also take into account the conditional independence of the observed results under the hidden variables, which aims to project features into a probability distribution appreciated for its simplicity and interpretability. The advantages of these models in sentiment analysis are empirically investigated by combining the usual classifiers with the results of GloVe embedding on the SST-5 and IMDB datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.