Abstract

Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII.

Highlights

  • The feeding status of an organism can alter physiology and motor output leading to changes in health and behavior

  • We have previously demonstrated that suppression of unc-103-induced muscle seizures requires calcium/calmodulin-dependent kinase II (CaMKII) and ether-a-go-go (EAG) -like K+ channel activity in the sex muscles [1]

  • We demonstrate that lack of sensation of food in the environment can alleviate spontaneous muscle seizures via an insulin-like mediated pathway

Read more

Summary

Introduction

The feeding status of an organism can alter physiology and motor output leading to changes in health and behavior. In addition to promoting these phenomena under food-deprived conditions, organisms must attenuate circuits not involved in foodforaging, such as reproductive behaviors. Food deprivation has been established to modulate the physiology of multiple neuromuscular circuits in different species, the detailed mechanisms that integrate these circuits are just beginning to emerge. Since an organism’s experience of food consists of multiple sensory cues such as odor, texture, and temperature, it is likely that physiological responses to food are dependent on both sensory perception and ingestion of food. We use the regulation of C. elegans male sex-muscle excitability under well-fed and fooddeprived conditions to dissect these mechanisms

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.