Abstract

In the past few years, new fossil finds and novel methodological approaches have prompted intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on their ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat occupation, proposed for the earliest stem-turtles. While research has focused largely on the origin of the anapsid skull and unique postcranial anatomy, little is known about the endocranial anatomy of turtles. Here, we provide 3D digital reconstructions and comparative descriptions of the brain, nasal cavity, neurovascular structures and endosseous labyrinth of Proganochelys quenstedti, one of the earliest stem-turtles, as well as other turtle taxa. Our results demonstrate that P. quenstedti had retained a simple tube-like brain morphology with poorly differentiated regions and mediocre hearing and vision, but a well-developed olfactory sense. Endocast shape analysis indicates that an increase in size and regionalization of the brain took place in the course of turtle evolution, achieving an endocast diversity comparable to other amniote groups. Based on the new evidence, we further conclude that P. quenstedti was a highly terrestrial, but most likely not a fossorial taxon

Highlights

  • Turtles (Testudinata sensu Joyce et al, 2004) are a diverse group of reptiles with an unusual “bauplan” fundamentally different from that of other amniotes

  • The close similarity of these features in both specimens confirms that this morphology is natural and unlikely to be a result of taphonomic deformation

  • Even though more taxa have been assigned to the turtle stemlineage recently (Li et al, 2008; Lyson et al, 2010; Schoch and Sues, 2015), Proganochelys quenstedti remains one of the most important stem-turtles, given its phylogenetic position as the earliest shelled turtle with a completely preserved skull (Parsons, 1959, 1970; Halpern, 1992; Joyce et al, 2016)

Read more

Summary

Introduction

Turtles (Testudinata sensu Joyce et al, 2004) are a diverse group of reptiles with an unusual “bauplan” fundamentally different from that of other amniotes. Neuroanatomy and Ecology of Proganochelys tomography and digital visualization) have provided new data to the debate of turtle ancestry (Li et al, 2008; Bever et al, 2015; Schoch and Sues, 2015). These studies found support for the diapsid origin of turtles and produced potential evidence for closure of the temporal fenestrae early in their evolutionary history (Schoch and Sues, 2015; Werneburg, 2015; Lyson et al, 2016)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.