Abstract

The TTX-sensitive Na(v)1.7 (PN1) Na(+) channel alpha subunit protein is expressed mainly in small dorsal root ganglion (DRG) neurones. This study examines immunocytochemically whether it is expressed exclusively or preferentially in nociceptive primary afferent DRG neurones, and determines the electrophysiological properties of neurones that express it. Intracellular somatic action potentials (APs) evoked by dorsal root stimulation were recorded in L6/S1 DRG neurones at 30 +/- 2 degrees C in vivo in deeply anaesthetised young guinea-pigs. Each neurone was classified, from its dorsal root conduction velocity (CV) as a C-, Adelta- or Aalpha/beta-fibre unit and from its response to mechanical and thermal stimuli, as a nociceptive, low threshold mechanoreceptive (LTM) or unresponsive unit. Fluorescent dye was injected into the soma and Na(v)1.7-like immunoreactivity (Na(v)1.7-LI) was examined on sections of dye-injected neurones. All C-, 90 % of Adelta- and 40 % of Aalpha/beta-fibre units, including both nociceptive and LTM units, showed Na(v)1.7-LI. Positive units included 1/1 C-LTM, 6/6 C-nociceptive, 4/4 C-unresponsive (possible silent nociceptive) units, 5/6 Adelta-LTM (D hair), 13/14 Adelta-nociceptive, 2/9 Aalpha/beta-nociceptive, 10/18 Aalpha/beta-LTM cutaneous and 0/9 Aalpha/beta-muscle spindle afferent units. Overall, a higher proportion of nociceptive than of LTM neurones was positive, and the median relative staining intensity was greater in nociceptive than LTM units. Na(v)1.7-LI intensity was clearly positively correlated with AP duration and (less strongly) negatively correlated with CV and soma size. Since nociceptive units tend overall to have longer duration APs, slower CVs and smaller somata, these correlations may be related to the generally greater expression of Na(v)1.7 in nociceptive units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.