Abstract

15.1 CCD Sensors A CCD sensor is a charge-coupled device. Potential wells for electrons are created by extrinsic doping of a semiconductor. The metal-oxide gate of a field-effect transistor determines the depth of a well. An external voltage may raise or lower a gate. A specific gate sequence transfers electrons between wells. The charge-coupling process converts photoelectrons into a video signal. Holst and Lomheim, provide a broad review of CCD and complementary metal-oxide semiconductor (CMOS) sensors. Janesick provides a more rigorous review of CCD technology. Figure 15.1 displays the structure of a potential well of a CCD sensor. An n-type material donates negatively charged electrons. A p-type material donates positively charged holes. The bulk material is p-type silicon. The Fermi level defines an equal probability for a hole and an electron. n-implantation raises the Fermi level by donation of electrons. Consequently, the conduction-band edge is lower in the n-doped region. This defines the base of the well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.