Abstract

This paper presents a new algorithm for position sensorless vector control of the permanent magnets synchronous motors (PMSM), which is based on the well-known approach, when rotor position and speed information is obtained by using current error between actual and estimated currents. Estimated current is calculated using motor model, which is written in the synchronous reference frame dq. The current difference is decomposed into two components. One of them is used for motor back-emf and speed estimation and another one is used as a correction term. Rotor position is calculated as an integral of the estimated speed. Utilization of two current error components allows to build reliable system with low estimation error, where one current error component is used for estimation in static modes and another one in dynamic mode. Robustness of the proposed algorithm and its sensitivity to the motor parameters variations are also described. This paper pays attention to the drive starting procedure in the sensorless mode as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.