Abstract

This study aims to improve the operating stability of the resistance strain weighing sensor and eliminate fuzzy factors in fault diagnosis. Based on fuzzy techniques for fault diagnosis, the proposed fuzzy Petri net model uses the fault logical relationship between a sensor and an improved Petri net model. A formula for confidence-based reasoning is proposed using an algorithm, which combines neural network regulation algorithm with a transition-enabled ignition judgment matrix. This formula can yield an accurate assessment of the operating state of the sensor. Backward inference and the minimum cut set theory are also combined to obtain the priority of faults, which helps avoid blind and ambiguous maintenance. The sensor model was analyzed, and its accuracy and validity were verified through statistical analysis and comparison with other methods of fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.