Abstract

Abstract BiVO4 is an efficient and stable visible active photoanode material. However, due to its unfavorable conduction band position which falls below the H2 reduction potential, it fails to carry out the complete water splitting reaction. On the other hand, larger band gap TiO2 is able to photocatalytically split water, thanks to its negative conduction band energy. Aiming at verifying the possibility of sensitizing TiO2 with BiVO4 and employing the so obtained composite material in photocatalytic water splitting under visible light, we prepared and photoelectrochemically characterized TiO2/BiVO4 heterojunction electrodes. The photocatalytic reduction of methyl viologen, an electron acceptor probe with a reduction potential close to that of protons, was used to evaluate the reducing ability of the photoactive materials under visible light. An apparently counterintuitive electron transfer from photoexcited BiVO4 to the TiO2 conduction band occurs in the TiO2/BiVO4 heterojunction, resulting in TiO2 sensitization and production of highly reductive electrons, which appears to be favored by the band alignment occurring at the heterojunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.