Abstract

A novel vanelike nanostructure based on the hybridization of carbon nanotubes and carbon nanocoils has been fabricated by a two-step chemical vapor deposition method. A flexible and sensitive strain sensor is prepared by coupling this hybrid structure with polydimethylsiloxane. By regulating the density and length of carbon nanotubes, the gauge factor and strain range of the sensors are tuned from 4.5 to 70 and 9 to 260%, respectively. These sensors exhibit high reliability and stability in a more than 10 000-cycle test and have a prompt response time of less than 37 ms. Owing to the tunable properties, these sensors show great potential in monitoring both subtle and large-scale displacements, which can meet the diverse demands of human motion monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.