Abstract
AbstractWe used two sunflower genotypes displaying pericarp-imposed dormancy at high incubation temperatures (i.e. 30°C) to investigate the role of the pericarp as a limitation to oxygen availability to the embryo (hypoxia), and its impact on embryo abscisic acid (ABA) content and sensitivity to ABA. Results showed that both genotypes displayed very different oxygen threshold values for inhibition of embryo germination when incubation was performed at 30°C. Expression of dormancy in one genotype was therefore related to exacerbated embryo sensitivity to hypoxia, whereas in the other genotype, the pericarp appeared to act as a more severe restraint to oxygen entry. Increased sensitivity to hypoxia was, in part, related to increased sensitivity to ABA, but not to alterations in ABA metabolism. The activity of pericarp-microbial communities (bacteria and fungi) at high temperatures was also assessed as a potential determinant of hypoxia to the embryo. Oxygen consumption in pericarps incubated at 30°C was attenuated with antibiotics, which concomitantly promoted achene germination. In agreement with the observed more severe oxygen deprivation to the embryo exerted by the pericarp, the bacterial load in the pericarp was significantly higher in the commercial hybrid than in the inbred line; however, the application of antibiotics strongly reduced the bacterial colony counts for each genotype. Different bacterial and fungal communities, assessed through their profiles of carbon-source utilization, were determined between genotypes and after treatment with antibiotics. This work highlights the relationship between enhancement of sensitivity to hypoxia with incubation temperature and seed dormancy expression, and suggests that microbial activity might be part of the mechanism through which hypoxia is imposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.