Abstract
Abstract A recently published nuclear forensics methodology for source discrimination of separated weapons-grade plutonium utilizes intra-element isotope ratios and a maximum likelihood formulation to identify the most likely source reactor-type, fuel burnup and time since irradiation of unknown material. Sensitivity studies performed here on the effects of random measurement error and the uncertainty in intra-element isotope ratio values show that different intra-element isotope ratios have disproportionate contributions to the determination of the reactor parameters. The methodology is robust to individual errors in measured intra-element isotope ratio values and even more so for uniform systematic errors due to competing effects on the predictions from the selected intra-element isotope ratios suite. For a unique sample-model pair, simulation uncertainties of up to 28% are acceptable without impeding successful source-reactor discrimination. However, for a generic sample with multiple plausible sources within the reactor library, uncertainties of 7% or less may be required. The results confirm the critical role of accurate reactor core physics, fuel burnup simulations and experimental measurements in the proposed methodology where increased simulation uncertainty is found to significantly affect the capability to discriminate between the reactors in the library.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.