Abstract

Cuprate superconductors have a universal tendency to form charge density-wave (CDW) order which competes with superconductivity and is strongest at a doping $p \simeq 0.12$. Here we show that in the archetypal cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO) pressure suppresses charge order, but does not affect the pseudogap phase. This is based on transport measurements under pressure, which reveal that the onset of the pseudogap at $T^*$ is independent of pressure, while the negative Hall effect, a clear signature of CDW order in YBCO, is suppressed by pressure. We also find that pressure and magnetic field shift the superconducting transition temperature $T_{\rm c}$ of YBCO in the same way as a function of doping - but in opposite directions - and most effectively at $p \simeq 0.12$. This shows that the competition between superconductivity and CDW order can be tuned in two ways, either by suppressing superconductivity with field or suppressing CDW order by pressure. Based on existing high-pressure data and our own work, we observe that when CDW order is fully suppressed at high pressure, the so-called "1/8 anomaly" in the superconducting dome vanishes, revealing a smooth $T_{\rm c}$ dome which now peaks at $p \simeq 0.13$. We propose that this $T_{\rm c}$ dome is shaped by the competing effects of the pseudogap phase below its critical point $p^{\star} \sim 0.19$ and spin order at low doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.