Abstract

We examine the sensitivity of Saffman–Taylor fingers to controlled variations in channel depth by investigating the effects of centred, rectangular occlusions in Hele-Shaw channels. For large occlusions, the geometry is known to support symmetric, asymmetric and oscillatory propagation states when air displaces a more viscous fluid from within the channel. A previously developed depth-averaged model is found to be in quantitative agreement with laboratory experiments once the aspect ratio (width/height) of the tube’s cross-section reaches a value of 40. We find that the multiplicity of solutions at finite occlusion heights arises through interactions of the single stable and multiple unstable solutions already present in the absence of the occlusion: the classic Saffman–Taylor viscous fingering problem. The sequence of interactions that occurs with increasing occlusion height is the same for all aspect ratios investigated, but the occlusion height required for each interaction decreases with increasing aspect ratio. Thus, the system becomes more sensitive as the aspect ratio increases in the sense that multiple solutions are provoked for smaller relative depth changes. We estimate that the required depth changes become of the same order as the typical roughnesses of the experimental system ($1~{\rm\mu}\text{m}$) for aspect ratios beyond 155, which we conjecture underlies the extreme sensitivity of experiments conducted in such Hele-Shaw channels.

Highlights

  • Two-phase displacement flow in a confined geometry is a fundamental problem in fluid mechanics with applications in biomechanics, geophysics and industry

  • The same general structure is found to occur at all tube aspect ratios

  • The sensitivity of Saffman–Taylor fingers in large aspect ratio Hele-Shaw channels has been of interest since the original work of Saffman & Taylor (1958), who found symmetric and later asymmetric (Taylor & Saffman 1959) continuous families of solutions to their depth-averaged model, but no mechanism to select the experimentally observed symmetric half-width finger occurring at high propagation speeds

Read more

Summary

Introduction

Two-phase displacement flow in a confined geometry is a fundamental problem in fluid mechanics with applications in biomechanics, geophysics and industry.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.