Abstract

The sensitivity of our time-dependent simulations of low confinement (L-mode) discharges to variations in initial profiles and time-dependent boundary conditions has been explored. These time-dependent tokamak plasma simulations were performed using a theory-based Multi-mode transport model that includes ion temperature gradient (ITG) and trapped electron modes (TEM), kinetic and resistive ballooning modes and neoclassical modes. The density and temperature profiles predicted in our simulations of L-mode discharges are found to be robust, even with significant variations in the initial or boundary conditions. Although transport associated with a single mode can be strongly affected by local changes in plasma parameters resulting from changes in the boundary conditions, the total transport remains largely unchanged because of compensation by other transport modes. The sensitivity of the predicted temperature and density profiles to a variation in the Multi-mode model is also examined. When the Dominguez-Waltz theory of transport driven by ITG and TEM modes is replaced in the Multi-mode model by the Weiland description, we find that the predictions of the Weiland model more closely match the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.