Abstract

In marine ecosystems, maximum sustainable yield considerations are affected by any substantial changes that occur in the top and bottom compartments of the food-web. This study explores how the southern North Sea’s fisheries may need to adjust their fishing efforts to maintain optimum yields of sole, plaice, cod and brown shrimps under increased marine mammal populations and a reduced primary productivity. We constructed plausible scenarios of ongoing food-web changes using the results of Bayesian age-structured population models to estimate carrying capacities of harbour porpoises (Phocoena phocoena) and grey seals (Halichoerus grypus). Losses in primary productivity were predicted by lower trophic level ecosystem models. These scenarios were implemented in a food-web model of the southern North Sea. For each scenario, we sought mixed-fleet fishing efforts that would deliver maximum yields of sole, plaice, cod and brown shrimp combined. We also did so for a baseline run with unaltered mammal and primary production, and compared the differences in optimal fishing strategies, predicted yields, and states of the stocks between the scenarios. We found stocks and yields to be far more sensitive to changes in primary productivity than to increased marine mammal predation. The latter predominantly impacted cod, and even benefitted brown shrimps compared to the baseline run. Under 30% reduced primary productivity, fishing efforts had to be reduced by 50% to still provide maximum yields, whereas the marine mammal scenario induced no need to adjust the fishing regime. This draws attention to the potential gains of incorporating bottom-up processes into long-term management considerations, while marine mammal predation may be less of a concern, in particular for flatfish fisheries in the North Sea, and may even benefit shrimp trawlers because of reduced predation on shrimp from fish predators.

Highlights

  • IntroductionManaging fisheries for cod (Gadus morhua), plaice (Pleuronectes platessa), sole (Solea solea) and brown shrimp (Crangon crangon) in the southern North Sea (divisions IVb and IVc of the International Council for Exploration of the Sea, ICES; Fig 1) is a challenging enterprise, as the various target species are linked to each other through a complex food-web [1,2,3]

  • Managing fisheries for cod (Gadus morhua), plaice (Pleuronectes platessa), sole (Solea solea) and brown shrimp (Crangon crangon) in the southern North Sea is a challenging enterprise, as the various target species are linked to each other through a complex food-web [1,2,3]

  • For each such potential change of the modelled system, we investigated if it would lead to a need to adapt fishing strategies to achieve multispecies MSY (msMSY) and the consequences it would cause to yields, revenues, and stock biomasses

Read more

Summary

Introduction

Managing fisheries for cod (Gadus morhua), plaice (Pleuronectes platessa), sole (Solea solea) and brown shrimp (Crangon crangon) in the southern North Sea (divisions IVb and IVc of the International Council for Exploration of the Sea, ICES; Fig 1) is a challenging enterprise, as the various target species are linked to each other through a complex food-web [1,2,3]. One and the same species can be extracted by different gears with different consequences for other stocks and life stages and the environment [4,5,6,7] Both multispecies and mixed-fleet effects have consequences when considering maximum sustainable yield (MSY) options for the area, questioning whether maximum yields of all single stocks can be achieved simultaneously [2, 6, 8]. Since the beginning of the 1980s, de-eutrophication measures led to reduced riverine discharges of inorganic phosphorous [9] This decrease of nutrient availability can affect primary and secondary production [10, 11], a change in system productivity which bears the potential of cascading through the food-chain to affect exploited populations and fishing yields [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.