Abstract

Multimetric indices of biotic integrity (IBIs) are commonly used to assess condition of stream fish assemblages, but their ability to monitor trends within streams over time is largely unknown. We assessed the trend detection ability of two IBI formulations (one with traditional scoring and metrics, and one with nontraditional scoring and region-specific metrics) and of similarity and diversity indices using simulations that progressively altered the fish assemblages of 39 streams in the United States mid-Atlantic Highlands region. We also assessed responses to simulated 50% variability in fish abundances, as a measure of background "noise." Fish assemblage indices responded little to changes that affected all species proportionally despite substantial changes in total fish number. Assemblage indices responded better to scenarios that differentially affected fish species, either according to life history traits or by increasing dominance of already common species, but even these changes took some time to detect relative to background variability levels. Ordinations of stream fish assemblage data suggested that differences among sites were maintained even after substantial alterations of fish composition within sites. IBIs are designed to detect broad assemblage differences among sites while downplaying abundance changes and variability increases that were the first indications of within-site changes, and they appear more suited to detecting large departures from natural fish assemblages than for monitoring gradual changes such as those our simulations produced. Inferences about causes of assemblage changes should be made with caution because of correlations among species traits and interdependence among IBI component metrics. Site trend assessments should be made based on all available data rather than just by summary indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.