Abstract

Continuous Welded Rails (CWR) are a key infrastructure element in the safety and efficiency of rail transportation. Their correct exploitation (operational) requires surveying and diagnostic monitoring based not only on the results of rail displacement measurements, but also on the geometric parameters of the track in the horizontal (H) and vertical (V) planes. Many researchers have proposed different approaches for surveying and diagnostic monitoring of CWR. However, they do not refer to the determination of railway track defectiveness (parametric defects, track defectiveness) respectively on straight and curvilinear segments. Research topics involving CWR constitute a continuous openness to research with particular application of synergy effects in the optimization of monitoring of CWR geometry shaped by exploitation processes. In this study, based on real measurement data of six geometric parameters (H: track gauge, gradient of track gauge, horizontal irregularities and V: cant, twist, vertical irregularities), the most sensitive parameters in sustainable development CWR are defined. The research answered that the most sensitive parameters in the sustainability development of CWR belong in the range of the plane H: gradient of track gauge and horizontal irregularities, and in the plane V: vertical irregularities. These escalate especially on curvilinear sections, requiring more significant maintenance capacity. Due to the growing importance of rail transportation as a sustainable, environmentally friendly, and mass transit mode, the research results provide a basis for life cycle management of CWR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call