Abstract

We demonstrate that the precipitation of cobalt disilicide phase in silicon during high-temperature (500 °C and 650 °C) implantation is noticeably affected by impurities of phosphorus and boron. Measurements of B-type CoSi2 cluster sizes and number densities as a function of implantation dose indicate that the number density of clusters progressively increases as the phosphorus concentration increases from 7 × 1011 to 8 × 1013 cm−3. A tentative explanation of these observations is proposed based on the previously suggested mechanism of precipitate nucleation, and on the results of first principles calculations summarized in Paper II, published as a follow-up paper. The results imply that utmost care is to be taken when dealing with transition metal precipitation during ion implantation into silicon because variations in the dopant content can affect the reproducibility of results even at extremely low dopant concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.