Abstract

Organic material, about half of which is water soluble, constitutes nearly 80% of the wet‐season aerosol mass in the Amazon Basin, while soluble inorganic salts (predominantly ammonium bisulfate) represent about 15%. A detailed analysis of number distributions and the size‐dependent chemical composition of the aerosol indicates that, in principle, the sulfate fraction could account for most of the cloud condensation nuclei (CCN) activity. Uncertainty about the chemical speciation of the water‐soluble organic component precludes a rigorous analysis of its contribution to nucleation activity. Within reasonable assumptions, we can, however, predict a similar contribution of the organic component to CCN activity as that from sulfate. Because of the nonlinear dependence of droplet nucleation behavior on solute amount, the nucleation activity cannot be attributed uniquely to the inorganic or organic fractions. The role of water‐soluble organic compounds as surfactants, however, may be significant (especially in the case of biomass‐burning aerosol) and more field measurements are needed to quantify their effects on the surface tension of ambient aerosols. The parametric dependence of the CCN spectra on the physical and chemical properties of the aerosol show that the number distribution, soluble content of the aerosol, and surface tension effects all play an important role in determining CCN spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.